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ABSTRACT 

This paper deals with one of the advanced control algorithms – Generalized Predictive 
Control (GPC), which is one of the most popular methods of Model Predictive Control 
(MPC). This control algorithm optimizes control action and output error within a time ho-
rizon and can be successfully used to control systems with limited inputs and outputs. A 
neural network system model is used for prediction of future system behavior. The control 
algorithm was implemented in the simulation environment MATLAB/Simulink and tested 
on mathematical and physical models. 

 

1. INTRODUCTION 

The beginnings of Model Predictive Control (MPC) date back to the 1970s. Model Predic-
tive Control integrates optimal control, dead time processes control, multivariable control 
and future references when available. The MPC is not a specific control strategy but an 
ample range of control methods where the control signal is obtained by minimizing an ob-
jective function. The model is the cornerstone of the MPC wherefore it is necessary to ob-
tain the best possible model, and that can be done by using Neural Network (NN). 

Model Predictive Control algorithms usually assume that all signals have an unlimited 
range, although real processes have constraints – limited range of action, limited action in-
crement, constrained output, etc. For this reason, it is necessary to use generalized predic-
tive controllers to cope with constrained inputs (amplitude and increment).  

2. GENERALIZED PREDICTIVE CONTROL 

Generalized Predictive Control (GPC) is one of the most popular methods of predictive 
control. It was proposed in 1987 [2] and has become one of the most popular MPC meth-
ods [1] in both industry and academia. The generalized predictive control algorithm con-
sists in applying a control sequence that minimizes a cost function (1). 
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where ( )tjty |ˆ +  is the predicted system output in the j-th prediction step in discrete time t, 

( )jtw +  is the reference trajectory, ( )jtu +∆  is the j-th increment of control action, P is 
the predicted horizon, M is the control horizon, λ  is the cost constant and d is delay. The 
first term considers the predicted error and the second term considers penalized future con-
trol increments.  

The criterion (1) can be rewritten to a matrix form [1]: 

( ) ( ) uuwfGuwfGuu TT)( ⋅+−+−+= λJ  (2) 

where f is the vector of the free response of a system on the prediction horizon, w is the 
vector of future references. 
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G is the matrix of dynamics, for linear causal systems: 
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where element gj is j-th coefficient of model step response (3). 
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The cost function minimum (2) is obtained by making the gradient of J equal to zero [1]. 
The result is equation (4), which is used for computation of the future control action in-
crements vector. 

( ) ( )ywGIGGu ˆT1T −+= −λ  (4) 

( ) ( )ˆu t∆ = −k w y  (5) 

Where k is the first row of the matrix ( ) T1T GIGG
−+ λ . Only the first increment of control 

action is used for control (5). 

2.1. CONSTRAINTS IMPLEMENTATION  

The GPC, which was described previously, consider all signals have an unlimited range, 
but this is not realistic because in practice all processes have constraints. A control action 
increment limits can be described by equation 



maxmin )1()( ututuu ∆≤−−≤∆  (6) 

and control action amplitude limits can be described by equation 

maxmin )( utuu ≤≤  (7) 

Now, an optimization problem with a quadratic cost function (1) and linear constraints (6) 
and (7) can be solved by Quadratic Programming (QP). The criterion (1) has to be rewrit-
ten to equation 
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where 

( )IGGH λ+= T2  

( ) Gwfb TT 2 −=  

( ) ( )wfwff −−= T
0  

And the constraints (6) and (7) can be rewritten to: 

cAu ≤  (9) 

Where 
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Where I  is the identity matrix and T is the low triangular matrix as is shown in next equa-
tions. 
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3. APPLICATION OF CONSTRAINED AND UNCONSTRAINED GPC 

Both GPC algorithms were written in MATLAB and the model was obtained by using a 
neural network with the Levenberg-Marquardt training algorithm.  To test of the control 
algorithm on a physical model, real-time communication is used between MAT-
LAB/Simulink and PLC is via Ethernet using a communication client. The analog model, 
which contains operational amplifiers, resistors and capacitors, represents the third order 

process
2)1)(110(

1
)(

++
=

ss
sF .  

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t[s]

U
[V

]

System Output

 

 

Constrained GPC

Unconstrained GPC

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t[s]

U
[V

]

Control Action

 

 

Constrained GPC

Unconstrained GPC

 

Fig. 1: Comparison of Constrained and Unconstrained GPC 

 

Criterion \ controller Constrained GPC Unconstrained GPC 

( ) ( )( )∑ −= 2
Q twtyc  1.85 2.05 

( )( )∑= 2
E tuc  121 119 

( )( )∑ ∆= 2
D tuc  0.134 0.135 

Tab. 1: Quality of regulation Constrained and Unconstrained GPC. 

 

Fig. 1 shows a comparison of constrained and unconstrained GPC. The GPC parameters 
were 20P = , 10M = , 5.0=λ  and the control action increment constraint  



( 05.0max ≤∆u , 05.0min −≥∆u )  and control action amplitude constraints ( 2.1max ≤u ) are 

applied to both GPC outputs. 

In the first case, the unconstrained GPC was computed analytically by using equation (4) 
and after that its output ( )(tu∆ , )(tu ) was limited. On the contrary, constrained GPC opti-
mizes the cost function (8) with constraints (9). The problem of quadratic programming 
solved MATLAB function quadprog. 

4. CONCLUSION 

This paper shows the comparison of constrained and unconstrained Generalized Predictive 
Control. This comparison is shown on an analog model and the control action increment 
constraint and control action amplitude constraints are applied to both GPC outputs.  

The comparison of both GPCs is shown in Fig. 1, and quality of regulation is compared in 
Tab. 1. The responses show the main advantage of constrained GPC - optimizing control 
actions with respect to actuator and/or process limits (the control actions increment and the 
control action amplitude were constrained).  Such a GPC controller can track the reference 
trajectory better, and its quadratic output error criterion (Tab. 1) is about 20% lower in 
comparison with the unconstrained GPC.    

GPC is an effective tool for the control of many processes such as processes with input, 
output or state constraints, processes with delays and processes with known reference tra-
jectory as well. 
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